
Improving Reinforcement Learning with Human Input

Matthew E. Taylor
Borealis AI, Edmonton, AB

matthew.taylor@borealisai.com

Abstract
Reinforcement learning (RL) has had many suc-
cesses when learning autonomously. This paper
and accompanying talk consider how to make use
of a non-technical human participant, when avail-
able. In particular, we consider the case where a
human could 1) provide demonstrations of good be-
havior, 2) provide online evaluative feedback, or 3)
define a curriculum of tasks for the agent to learn
on. In all cases, our work has shown such infor-
mation can be effectively leveraged. After giving a
high-level overview of this work, we will highlight
a set of open questions and suggest where future
work could be usefully focused.

1 Introduction
Reinforcement learning [Sutton and Barto, 1998] (RL) has
had many successes in both virtual and physical settings. Un-
fortunately, in many cases, significant amounts of data and/or
computation is required to reach reasonable performance. If
working in a simulator, such initial poor performance may be
acceptable. When working in the real world, however, poor
performance has a real cost. More troubling, there may be
cases where a reward function is not well defined. For in-
stance, if a person purchases a robot and wishes it to learn
a new task in her house, few consumers will be able to fully
define a reward function that the robot can learn to optimize.

This line of work, therefore, asks the following question:

If there is a non-technical, sub-optimal, human who
can help an agent learn, how can an agent best leverage
their knowledge to learn (near-) optimal behavior?

The following paper discusses three instances where a
non-technical human can provide information to a learning
agent via demonstration, feedback, or curriculum design.

2 Background: Reinforcement Learning
RL is a very general framework for learning to maximize a
real-valued reward, R(S,A) 7→ <. Unlike supervised learn-
ing, there are no positive or negative examples. Instead, an
agent must learn to take an action, a ∈ A, in each state,

s ∈ S. This is nontrivial, particularly because the transi-
tion function that describes how the agent’s actions affect the
state, T (S,A) 7→ S, is typically unknown. A mapping from
states to actions is called a policy, π(S) 7→ A. One com-
mon way to learn a policy is to first learn an action-value
function, Q(S,A) 7→ <, which estimates the long-term dis-
counted reward for a given state-action pair. Given an optimal
action-value function, the optimal policy would be realized
by always executing the action with the highest value in the
current state.

3 Leveraging Human Demonstrations
One way of learning faster is to re-frame the problem to that
of mimicking a demonstrator. In this case, the agent typically
solves a supervised learning problem so that it can perform
similarly to a demonstrator [Argall et al., 2009]. LfD meth-
ods typically assume that the demonstrator is near-optimal—
even if there is an environmental reward signal, LfD methods
typically do not use it to improve the policy.

3.1 Human-Agent Transfer
Human-agent transfer [Taylor et al., 2011] (HAT) reimagines
demonstration-based learning from the perspective of transfer
learning [Taylor and Stone, 2009], where knowledge gained
from a prior task is used as a bias to bootstrap RL in a re-
lated but different task. HAT views the demonstration itself
as initial bias (coming from some source agent) that informs
the RL’s action choices, but gradually weans RL off this bias
as the RL’s own value function improves over time. In par-
ticular, HAT follows the following steps (based on the earlier
idea of Rule Transfer [Taylor and Stone, 2007]):

1. A human or trained agent demonstrates a learned policy
in the task. Record 〈s, a〉 samples.

2. Use a supervised learning method to summarize this data.
Mapping states to actions represents a policy that is the
best guess the agent has at what the human or trained
agent would do.

3. Use the learned classifier to bootstrap learning in the new
task. For instance, our previous work [Taylor and Stone,
2007] provided three ways of leveraging this knowledge.
One such method is Probabilistic Policy Reuse. The stan-
dard ε-greedy action selection is changed so that with



 4

 6

 8

 10

 12

 14

 16

 0  5  10  15  20  25  30

E
p
is

o
d
e
 D

u
ra

ti
o
n
 (

s
e
c
o
n
d
s
)

Training Time (simulator hours)

No Prior
Value Bonus
Extra Action

Probabilistic Policy Reuse
Teacher Demonstration

Figure 1: This graph summarizes the performance of Sarsa learning
in Keepaway using four different algorithms. One demonstration of
20 episodes (roughly 3 minutes of wall-clock time) was used for all
three HAT learners. Error bars show the standard error.

probability ε the agent takes a random action, with prob-
ability Φ the agent takes the action suggested by the clas-
sifier, and with probability 1− ε−Φ the agent exploits its
action-value function. Φ begins near 1 and is gradually
decayed over time.

Figure 1 shows the results of using HAT in the 3 vs. 2 Keep-
away [Stone et al., 2006] domain. HAT can sometimes im-
prove the jumpstart (i.e., the initial performance, relative to
learning without a prior) and consistently improves both the
performance at the end of 30 simulated hours of training and
the total reward (i.e., the area under the curve). Another per-
formance metric is the time-to-threshold. For instance, con-
sider the number of simulated hours needed to reach a per-
formance of 14 sections — learning from scratch requires
roughly 14 hours, while learning with probabilistic policy
reuse requires roughly half that time. Saving 7 hours of train-
ing time by using only 3 minutes of human time is often a
favorable tradeoff.1

3.2 Confidence-Based HAT
Even though the demonstration may cover a small part of
the state space, the classifier produced will be able to sug-
gest actions for any state. In some cases, the suggested ac-
tion may be very different from what the original demonstra-
tor would have provided. Confidence-based HAT [Wang and
Taylor, 2017] (CHAT) builds upon HAT by modifying steps
2 and 3. In particular, when learning a classifier, it also learns
a confidence measure that can be used. In step 3, the ac-
tion suggested by the classifier is only executed if the con-
fidence in the predicted action is above some threshold con-
fidence. Decision trees, neural networks, and Gaussian pro-
cesses have all been shown to work well with CHAT — a
confidence threshold parameter can significantly improve the
performance of an agent, relative to learning from scratch or

1Although out of scope for the current paper, HAT [Taylor et
al., 2011] also showed that combining demonstrations by different
demonstrators of different qualities also improved performance.

Figure 2: This figure shows how different amounts of advice will be
used with different CHAT confidence thresholds.

learning with HAT, in both 3 vs. 2 Keepaway and in the game
of Mario [Karakovskiy and Togelius, 2012].

For an example of how the confidence threshold affects
performance, we first let a trained agent play Mario using its
fixed policy to generate 20 demonstration episodes. Second,
we train a Gaussian process. Third, we compare the actions
suggested by the classifier with the actual actions made by
the fixed-policy agent to see how often they are the same.
Figure 2 shows how the CHAT agent acts with different con-
fidence thresholds. For each confidence threshold, we show
the number of actions made by CHAT and the rate of consis-
tency with respect to the fixed-policy agent. When the con-
fidence threshold is very high, the actions are consistent, but
very few actions will be selected (and performance will be
similar to that of learning from scratch because little advice
is used). When the confidence threshold is very low, actions
made by GPHAT are less likely to be the same as the source
task agent’s actions (and the performance will be similar to
that of using HAT, which has no confidence threshold).

3.3 Shaping with Inverse Reinforcement Learning
Rather than using collected demonstrations to learn a clas-
sifier and then change the action-selection method, consider
instead how the actual reward could be changed. In particu-
lar, Inverse Reinforcement Learning (IRL) is the problem of
learning a reward function using a set of observations from
expert demonstrations. The method introduced in [Suay et
al., 2016] uses IRL on the demonstrations to learn a set of
weights2, w over a set of reward features f : RIRL(s) =∑n

i=1 wifi(s). RIRL(s) is now a reward function that can be
used as a shaping reward, such that the new reward R′ is pro-
vided to the agent as R(s, a, s′) = R(s, a, s′) +F (s, a, s′) =
R(s, a, s′)+γRIRL(s′)−RIRL(s). BecauseRIRL is used as
a potential-based shaping reward, the optimal policy is guar-
anteed to be unchanged from using only R [Ng et al., 1999].
RIRL(s) works well for shaping over states. But in some

cases, shaping over state-action pairs may provide more im-
provement. In order to keep using a potential-based reward,

2Although there are different solutions for the IRL problem,
many of them require the transition function to be known. We focus
on RE-IRL [Boularias et al., 2011], a model-free IRL method.



we use the “trick” from Harutyunyan et al. [2015] that uses
an additional action-value function to turn an arbitrary reward
function into a potential-based shaping reward function. We
found that using shaping over states and state-action pairs
both worked to improve learning in a simple maze domain
and in Mario.

4 Leveraging Human Feedback
In this section of the paper, we consider a complementary sce-
nario. First, we now do not assume there is an environmental
reward. Second, rather than teleoperating an agent (i.e., pro-
viding demonstrations), the human trainer will provide posi-
tive and negative feedback on the policy of the agent.

4.1 SABL
On each time step, the agent performs an action. The trainer
then evaluates the agent’s action, comparing it to the desired
policy. Then, the trainer can provide positive or negative
feedback to the agent, or provide no feedback at all. Note
that the final case becomes more likely as the agent moves
faster or the human becomes tired with giving feedback.

The SABL algorithm [Loftin et al., 2015] is one such
method for learning from a human trainer. The idea of learn-
ing from human feedback is not novel [Thomaz and Breazeal,
2006; Knox and Stone, 2009]. However, the primary differ-
ence between such existing methods and our method is that
our algorithm allows for different training strategies by treat-
ing human feedback as categorical, rather than numeric, po-
tentially allowing us to learn in the no feedback condition via
implicit communication. The hypothesis that treating a feed-
back signal as numeric (e.g., +1 for positive feedback, 0 for
no feedback, and -1 for negative feedback) loses information
is borne out in improved results.

First, we posited that different trainers could have differ-
ent feedback strategies. To test this hypothesis, we ran over
200 human-subjects studies via Amazon’s Mechanical Turk.
These Turkers trained an agent using SABL in a contextual
bandit setting. Of the 227 participants, we found that the ma-
jority (125) used a “reward-focused strategy.” When the agent
performed the correct action, the participant most often gave
positive feedback, but when the agent performed the incorrect
action, the participant most often provided no feedback. We
also found that 93 of the participants used a “balanced strat-
gey” where they gave positive feedback when the agent per-
formed the correct action and gave negative feedback when
the agent performed the incorrect action.3 This study demon-
strates that neutral or no feedback can have meaning.

In order to leverage this insight, we frame the trainer as
having three important parameters. First, the trainer makes
a mistake with probability ε. Second, if the agent’s action
is consistent with the trainer’s desired policy, the trainer will
give explicit reward with probability 1 − µ+. Third, if the
agent’s action is inconsistent with the trainer’s desired policy,
the trainer will explicitly punish with probability 1− µ−.

The µ parameters represent the trainer’s training strategy
— for example, µ+ =0.1, µ−=0.1 correspond to a balanced

3The remaining participants were either “punishment focused”
(6) or “inactive” (3).

feedback strategy where nearly every action receives explicit
feedback. Combining these elements, for time step t (each
time step corresponds to an episode with the agent observing
the world, choosing an action and receiving feedback), we
have a distribution over the feedback ft conditioned on the
observation ot, action at, and the trainer’s target policy λ∗,

p(ft = f+|ot, at, λ∗) =

{
(1− ε)(1− µ+), λ∗(ot) = at
ε(1− µ+), λ∗(ot) 6= at,

(1)

p(ft = f−|ot, at, λ∗) =

{
ε(1− µ−), λ∗(ot) = at

(1− ε)(1− µ−), λ∗(ot) 6= at,

(2)

p(ft = f0|ot, at, λ∗) =

{
(1− ε)µ+ + εµ−, λ∗(ot) = at
εµ+ + (1− ε)µ−, λ∗(ot) 6= at.

(3)

where f+ is an explicit positive feedback, f− is an ex-
plicit negative feedback, and f0 represents a lack of feed-
back. These equations are then used in the Strategy-Aware
Bayesian Learning (SABL) algorithm (Algorithm 1).

Algorithm 1 The SABL algorithm. The feedback distribution
p(ft|ot, at, λ∗(ot) = a′) is described by Equations 1, 2 and
3. takeAction(at) does not return until the episode finishes.

∀o ∈ O, a ∈ A : P [o, a]← 1
|A|

t← 0
while user has not terminated learning do

ot ← observeWorld()
at ← argmaxa′∈A P [ot, a

′]
takeAction(at)
ft ← receiveFeedback()
for all a′ ∈ A do

P [ot, a
′]← p(ft|ot, at, λ∗(ot) = a′)P [ot, a

′]

P [ot, · · · ]← normalize(P [ot, · · · ])
t← t+ 1

Results in our contextual bandit domain showed that treat-
ing rewards as categorical worked better than treating them
as numeric. A further extension in this work [Loftin et al.,
2015] is to introduce Inferring-SABL, or I-SABL, that uses
a Bayesian approach to learn a trainer’s µ+ and µ− parame-
ters. Once we learn the correct action for some observations,
we can use I-SABL to infer the trainer’s strategy in real time
and therefore improve the agent’s policy even when no ex-
plicit feedback is provided.

4.2 Implicit Communication and Sequential Tasks
While the previous section focused on applying SABL and
I-SABL to a contextual bandit, other work [Peng et al., 2016]
considered a sequential decision task. In particular, we as-
sume that the agent has the transition function (e.g., a map of
the environment) and access to a planner. Thus, the problem
is reduced to discovering which possible goal state the trainer
desires. For example, Figure 3 shows one example Sokeban-
like environment with its paired English command.



Figure 3: One of the test environments with the command “Move
the blue chair to the purple room.”

To enable language learning from agents trained with re-
ward and punishment, we use a probabilistic model [Mac-
Glashan et al., 2014] that connects the IBM Model 2 (IBM2)
language model [Brown et al., 1990] with a factored gen-
erative model of tasks, and the goal-directed SABL algo-
rithm [Loftin et al., 2015] for learning from human feedback.

In addition to showing that sequential decision tasks can
be learned via positive and negative feedback from human-
subjects studies, the Learning Agents Modeling Belief-
Dependent Action Speeds (LAMBDAS) approach also con-
siders how a learner can adapt its action execution speed to
learn more efficiently from human trainers. One problem re-
searchers have observed [Li et al., 2016] is that trainers often
reduce the amount of explicit feedback over time. LAMB-
DAS is designed to implicitly motivate trainers to provide use
explicit feedback in states where it would be most useful. We
demonstrate that the agent’s action execution speed can be
successfully modulated to strategically/implicitly encourage
more explicit feedback from a human trainer in parts of the
state space where the learner has more uncertainty about how
to act. Our results show that an adaptive speed agent dom-
inates two fixed-speed agents according to multiple metrics,
while making better use of limited human feedback.

4.3 Leveraging Human Curricula
Humans acquire knowledge efficiently by starting from sim-
ple concepts, and then gradually generalizing to more com-
plex ones using previously learned information. Recent
work [Taylor et al., 2007; Bengio et al., 2009; Kumar et
al., 2010; Lee and Grauman, 2011] has shown that machine-
learning algorithms can benefit from a similar training strat-
egy, called curriculum learning. Rather than considering all
training examples at once, the training data can be introduced
in a meaningful order such that the learner can build up a
complex model — the agent can learn faster on more difficult
examples after it has mastered simpler examples. In most
existing work, the curriculum is generated either automati-
cally [Kumar et al., 2010; Lee and Grauman, 2011; Narvekar
et al., 2016; Svetlik et al., 2016], by iteratively selecting ex-
amples with increasing difficulty tailored to the current abil-
ity of the learner, or manually by the algorithm designer,
who typically has specialized knowledge of the problem do-
main or algorithm [Stanley et al., 2005; Taylor et al., 2007;
Karpathy and Van De Panne, 2012]. How non-expert humans
design curricula is a relatively neglected topic.

This work instead presents users with a set of tasks (see

Figure 4: The library of 16 environments is organized by the number
of rooms and objects.

Figure 4) that the user can pick from, along with accompa-
nying English commands. After generating a curriculum, the
participant watches an automated trainer teach the agent to
accomplish each task in the curriculum, along with a final
target task (not directly represented in the 16 tasks).

After collecting 160 human-generated curricula, we were
pleased to see that the curricula all improved learning on the
target task. Much to our dismay, however, we found that
these human-generated curricula did not always outperform
randomly generated curricula. While this result confirms the
power of curricula when tasks are chosen to be simpler than
the final, target task, we had expected human intuition to out-
perform random selection!

After further analysis of the results, we found that partici-
pants were biased towards gradually introducing complexity
to the curriculum, as expected. We also found that partic-
ipants tended to select concepts (i.e., room color or object
type) that were related to the final target task. We there-
fore updated our curriculum learning algorithm to be biased
in learning the target task towards concepts that were most
frequently seen in the curriculum. With this small bias, we
then found that the human-designed curricula not only helped
the trainer teach the target concept more quickly but that the
human-designed curricula dominated random curricula.

5 Open Questions and Conclusion
While the positive results we have presented are encouraging,
there are many remaining open questions. For instance, rather
than only providing demonstrations before learning, it would
be interesting to allow a participant to remain to give demon-
strations on-demand, either because the demonstrator noticed
sub-optimal behavior, or because the agent proactively asks
the demonstrator for help.

It is not clear when, or why, one learning from demonstra-
tion method out performs another. What is it about different
domains that causes one method to be superior to another?

Rather than limiting the human participant to a single type
of advice, what possibilities exist for multi-modal advice?



What about other methods of advice, could be incorporated
into these paradigms (e.g., natural language advice, designat-
ing goal or sub-goal states, providing the agent a similarity
function [Rosenfeld et al., 2017], etc.)?

Our results on implicit communication suggest that if a par-
ticipant is better able to understand an agent, she is better able
to help that agent. What other techniques can be used to better
help non-technical participants understand the internal work-
ings of agents? Does this indeed allow for better advice, and
does this help the agent more than if the participant treats the
agent as a complete black box?

We hope the reader will agree that there are many inter-
esting unanswered questions in this area and that additional
effort by our community in this area is justified.

References
[Argall et al., 2009] Brenna D. Argall, Sonia Chernova, Manuela

Veloso, and Brett Browning. A survey of robot learning from
demonstration. Robot. Auton. Syst., 57(5):469–483, May 2009.

[Bengio et al., 2009] Yoshua Bengio, Jérôme Louradour, Ronan
Collobert, and Jason Weston. Curriculum learning. In ICML,
pages 41–48, 2009.

[Boularias et al., 2011] Abdeslam Boularias, Jens Kober, and Jan
Peters. Relative entropy inverse reinforcement learning. In AI
Stats, pages 182–189, 2011.

[Brown et al., 1990] Peter F Brown, John Cocke, Stephen A Della
Pietra, Vincent J Della Pietra, Fredrick Jelinek, John D Lafferty,
Robert L Mercer, and Paul S Roossin. A statistical approach
to machine translation. Computational linguistics, 16(2):79–85,
1990.

[Harutyunyan et al., 2015] Anna Harutyunyan, Sam Devlin, Peter
Vrancx, and Ann Nowe. Expressing arbitrary reward functions
as potential-based advice. In AAAI, pages 2652–2658, 2015.

[Karakovskiy and Togelius, 2012] S. Karakovskiy and J. Togelius.
The Mario AI benchmark and competitions. IEEE Transactions
on Computational Intelligence and AI in Games, 4(1):55–67,
March 2012.

[Karpathy and Van De Panne, 2012] Andrej Karpathy and Michiel
Van De Panne. Curriculum learning for motor skills. Advances
in AI, pages 1015–1023, 2012.

[Knox and Stone, 2009] W. Bradley Knox and Peter Stone. Interac-
tively Shaping Agents via Human Reinforcement: The TAMER
Framework. In KCAP, pages 9–16, 2009.

[Kumar et al., 2010] M Pawan Kumar, Benjamin Packer, and
Daphne Koller. Self-paced learning for latent variable models.
In Proc. of NIPS, pages 1189–1197, 2010.

[Lee and Grauman, 2011] Yong Jae Lee and Kristen Grauman.
Learning the easy things first: Self-paced visual category dis-
covery. In CVPR, pages 1721–1728, 2011.

[Li et al., 2016] Guangliang Li, Shimon Whiteson, W. Bradley
Knox, and Hayley Hung. Using informative behavior to increase
engagement while learning from human reward. Autonomous
Agents and Multi-Agent Systems, 30(5):826–848, 2016.

[Loftin et al., 2015] Robert Loftin, Bei Peng, James MacGlashan,
Michael L Littman, Matthew E Taylor, Jeff Huang, and David L
Roberts. Learning behaviors via human-delivered discrete feed-
back: modeling implicit feedback strategies to speed up learn-
ing. Autonomous Agents and Multi-Agent Systems, 30(1):30–59,
2015.

[MacGlashan et al., 2014] J. MacGlashan, M. L. Littman,
R. Loftin, B. Peng, D. L. Roberts, and M. E. Taylor. Training
an agent to ground commands with reward and punishment.
In Proceedings of the AAAI Machine Learning for Interactive
Systems Workshop, pages 6–12, 2014.

[Narvekar et al., 2016] Sanmit Narvekar, Jivko Sinapov, Matteo
Leonetti, and Peter Stone. Source task creation for curriculum
learning. In AAMAS, pages 566-574, 2016.

[Ng et al., 1999] Andrew Y. Ng, Daishi Harada, and Stuart J. Rus-
sell. Policy invariance under reward transformations: Theory and
application to reward shaping. In ICML, pages 278-287, 1999.

[Peng et al., 2016] Bei Peng, James MacGlashan, Robert Loftin,
Michael L. Littman, David L. Roberts, and Matthew E. Taylor.
A Need for Speed: Adapting Agent Action Speed to Improve
Task Learning from Non-Expert Humans. In Proc. of AAMAS,
pages 957–965, 2016.

[Rosenfeld et al., 2017] Ariel Rosenfeld, Matthew E. Taylor, and
Sarit Kraus. Leveraging Human Knowledge in Tabular Rein-
forcement Learning: A Study of Human Subjects. In Proc. of
IJCAI, pages 3823–3830, 2017.

[Stanley et al., 2005] Kenneth O. Stanley, Bobby D. Bryant, and
Risto Miikkulainen. Evolving neural network agents in the
NERO video game. In CIG, pages 182–189, 2005.

[Stone et al., 2006] Peter Stone, Gregory Kuhlmann, Matthew E.
Taylor, and Yaxin Liu. Keepaway Soccer: From Machine Learn-
ing Testbed to Benchmark. In RoboCup-2005: Robot Soccer
World Cup IX, Pages 93–105, 2006.

[Suay et al., 2016] Halit Bener Suay, Tim Brys, Matthew E. Taylor,
and Sonia Chernova. Learning from Demonstration for Shaping
through Inverse Reinforcement Learning. In Proc. of AAMAS,
pages 429–437, 2016.

[Sutton and Barto, 1998] R.S. Sutton and A.G. Barto. Reinforce-
ment learning: An introduction. MIT Press, 1998.

[Svetlik et al., 2016] M Svetlik, M Leonetti, J Sinapov, R Shah,
N Walker, and P Stone. Automatic curriculum graph genera-
tion for reinforcement learning agents. In Proc. of AAAI, pages
2590–2596, 2016.

[Taylor and Stone, 2007] Matthew E. Taylor and Peter Stone.
Cross-Domain Transfer for Reinforcement Learning. In Proc.
of ICML, pages 879-886, 2007.

[Taylor and Stone, 2009] Matthew E. Taylor and Peter Stone.
Transfer learning for reinforcement learning domains: A survey.
Journal of Machine Learning Research, 10(1):1633–1685, 2009.

[Taylor et al., 2007] Matthew E. Taylor, Peter Stone, and Yaxin
Liu. Transfer Learning via Inter-Task Mappings for Temporal
Difference Learning. Journal of Machine Learning Research,
8(1):2125–2167, 2007.

[Taylor et al., 2011] Matthew E. Taylor, Halit Bener Suay, and So-
nia Chernova. Integrating Reinforcement Learning with Human
Demonstrations of Varying Ability. In Proc. of AAMAS, pages
617–624, 2011.

[Thomaz and Breazeal, 2006] Andrea Lockerd Thomaz and Cyn-
thia Breazeal. Reinforcement Learning with Human Teachers:
Evidence of Feedback and Guidance with Implications for Learn-
ing Performance. In AAAI, pages 1000–1005, 2006.

[Wang and Taylor, 2017] Zhaodong Wang and Matthew E. Tay-
lor. Improving Reinforcement Learning with Confidence-Based
Demonstrations. In IJCAI, pages 3027–3033, 2017.


